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Longitudinal rolls represent the preferred form of convection in a horizontal fluid 
layer heated from below in the presence of parallel shear flows for sufficiently low 
Reynolds numbers and for a finite range of the Rayleigh number above the critical 
value Ra,. In this paper properties of the longitudinal rolls and their stability with 
respect to three-dimensional disturbances are investigated in the case of Poiseuille 
flow. While the convective heat transport is independent of the Reynolds number, 
the mass flux through the channel at  a given Reynolds number decreases with 
increasing Rayleigh number. A wavy instability is found to set in at a finite Reynolds 
number and relatively low Rayleigh numbers, depending on the Prandtl number P. 
In particular, the stability region for longitudinal rolls is analysed for P = 0.025,0.1, 
0.71, 2.5, and 7 .  For sufficiently small Reynolds number the oscillatory, the skewed 
varicose or the knot instability can precede the wavy instability. For P = 7 the wavy 
instability is preceded by a modified knot instability throughout the Reynolds- 
number range that has been investigated. In spite of the difference in symmetry, the 
results for Poiseuille flow resemble those obtained earlier in the case of plane Couette 
flow. 

1. Introduction 
Longitudinal rolls aligned with the direction of the mean shear have long been 

recognized as a preferred form of convection in a horizontal fluid layer heated from 
below and in the presence of a mean flow. Early experiments by Idrac and Terada 
as reported by Avsec & Luntz (1937) dealt with this situation, and many applications 
from cloud streets in the atmosphere (BBnard & Avsec, 1938; Kuettner 1971 ; Brown 
1980) to problems of heat transfer in the engineering sciences have been considered. 
For a review of this and other work refer to Kelly (1977). 

Longitudinal rolls compete with hydrodynamically excited transverse waves at 
the onset of instability of the horizontally uniform basic state. In the case of 
Poiseuille flow longitudinal rolls represent the preferred mode of instability at the 
Rayleigh number Ra, = 1708 for Reynolds numbers less than about Re, = 5400 
according to linear theory (Gage & Reid 1968). In the case of plane Couette flow no 
hydrodynamic instability is predicted by linear theory and the onset of instability 
thus occurs solely in the form of longitudinal convection rolls. For the case of 
combined Poiseuille and Couette flow see the recent paper of Fujimura & Kelly 
(1988). Experiments show that finite-amplitude instabilities typically occur for 
Reynolds numbers above threshold values of lo3 and linear theory is thus of little 
physical relevance at high Reynolds number. For this reason only Reynolds numbers 
of the order lo3 or less will be considered in this paper. 
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Longitudinal convection rolls are governed by the same equations as two- 
dimensional rolls in the absence of a shear flow. The Nusselt number is thus 
independent of the Reynolds number and this property also holds for the velocity 
components perpendicular to the direction of the mean flow. The latter is strongly 
affected by the action of the convection rolls, at least for low Prandtl numbers, and 
much of the theoretical research has therefore focused on the velocity component in 
the mean flow direction (see, for example, Ogura & Yagihashi 1969; Hwang & Cheng, 
1971). 

The stability of longitudinal rolls in the presence of Poiseuille flow has not been 
studied until now, however, even though evidence for the wavy instability of 
longitudinal rolls has been available since the observations discussed by Avsec & 
Luntz (1937) and by Avsec (1937). The analysis of this paper aims to close this gap 
and to provide results analogous to those obtained in the case of Couette flow by 
Clever, Busse & Kelly (1977). The major conclusion of the following analysis is that 
the wavy instability severely restricts the region of the physical realizability of 
longitudinal rolls. Because the interaction between convection and the mean shear 
increases through the transition, amplitude-sensitive properties of the wavy rolls 
such as the Nusselt number tend to increase less rapidly with Rayleigh number than 
in the case of longitudinal rolls. 

The paper starts with the mathematical formulation of the problem in $2. In  $3 
some of the properties of steady longitudinal rolls will be considered. The main 
results of the paper on the wavy instability are presented in $4. Concluding remarks 
and an outlook on further work are offered in $5.  

2. Mathematical formulation 
We consider a horizontal fluid layer of depth d with rigid upper and lower 

boundaries which are kept at  the temperatures Tl and T,, respectively. A uniform 
pressure gradient in the direction of the horizontal unit vector i is applied, such that 
a mean flow with a parabolic profile is realized as the basic state of the problem. 
Using d as lengthscale, d 2 / v  as timescale (where v is the kinematic viscosity of the 
fluid) and (T,-Tl)P as temperature scale, we write the equations of motion for the 
velocity vector v and the heat equation for the deviation 6 of the temperature field 
from the state of pure conduction in the dimensionless form 

V2u+kRa6-Vn = u.Vv+a/atv ,  ( 2 . 1 ~ )  

v.0 = 0, (2.lb) 

(2 .14  V 2 8  + k . v = P (  v - V 6  + a/at a),  
where the Rayleigh number Ra and the Prandtl number P are defined by 

V 
, P = - .  w(T2---T1)d3 Ra = 

VK K 

The thermal expansivity is denoted by y ,  K is the thermal diffusivity and g is the 
acceleration of gravity, which is directed opposite to the unit vector k.  All terms that 
can be written as gradients in equation (2 . la)  have been combined into V n .  We 
shall use a Cartesian system of coordinates with the z-coordinate in the direction of 
k and the 2-coordinate parallel to i .  
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The basic state of the system is described by 

v = iu, = Re (1 -42,) i, 9 = 0, 

where the Reynolds number 
UO max d Re = ~ 

V 
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(2.2) 

is defined with the maximum value of the parabolic velocity profile. Since the 
velocity field is solenoidal we introduce the representation 

tr = ( U , + U 1 ) i + v ' ,  

v' = V x (V x kp)  +V x k$ = &+E$ with (2-3) 
for the description of the secondary motions after the onset of convection, where the 
average of the scalar functions Q, and $ over horizontal planes is assumed to vanish 
such that the mean flow is described solely by i(uo + ul). 

By taking the vertical components of the curl and of the curlcurl of ( 2 . 1 ~ )  we 
obtain the following equations for p, and $ : 

a 
V 2 A 2 ~ -  (u; + u;) -A,Q,, ( 2 . 4 ~ )  ax 

V 4 A 2 ~  -Ru A2 9 = 6. (6. Vv') + 

(2.4b) 
a 

a Y  
V2A,$ = ~ * ( v * . V v ' ) +  A,$-(u~,+u~)-A,Q,,  

where the prime denotes the differentiation with respect to z and A, represents the 
two-dimensional Laplacian, A, = a2/i3x2 + a2/ay2. For a complete system of equations 
we must add an equation for u1 by taking the horizontal average (indicated by a bar) 
of the x-component of ( 2 . 1 ~ ) :  

We also rewrite equation ( 2 . 1 ~ )  for 9, 

V 2 9 - A , ~  = P 

( 2 . 4 ~ )  

(2.4d) 

The corresponding boundary conditions are given by 

p, = = $ = 8 = u1 = 0, at z = &i (2.5) 
Steady longitudinal convection rolls are described by x-independent solutions of 
(2.4). In this case $, uo and u1 do not enter ( 2 . 4 ~ )  and (2.4b) and the solutions ~ ( y ,  
z ) ,  8(y, z )  are thus independent of the Reynolds number. For the variables $ and u1 
the following linear system of equations is obtained : 

a 2  a a 
az2 aZ ay -U =--A,tj~-$. 

( 2 . 6 ~ )  

(2.6b) 

For the actual solution of the problem we employ the Galerkin method in which 
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the dependent variables are expanded in complete systems of functions satisfying the 
respective boundary conditions. The steady longitudinal roll solution is described by 

8 = C. b,,coslaysinnx(z+&), 
1 ,  n 

$ = C clnsinlaysinn7c(z+&), 
1. n 

u1 = C. U,sinnx(z+&), 
n 

( 2 . 7 ~ )  

(2.7b) 

(2 .7~)  

(2.7d) 

where the functionsf,(z) are the same as those used by Clever & Busse (1974, 1981, 
1987) in the analysis of convection rolls without shear flow. We also note that the 
solutions of interest exhibit vanishing coefficients whenever 1 + n is an odd integer in 
(2.7a, 6 )  and coefficients with even Z+n and with even n vanish in (2 .7~)  and (2.7d), 
respectively. 

The stability of steady solutions of the form (2.7) is studied by the superposition 
of three-dimensional infinitesimal disturbances, 

@ = C (dZn co~Zay+&~,sinlay)f~(z) exp{ibx+idy+crt}, (2.8) 

with analogous expressions for & and &. Since the disturbances of interest have finite 
values of b, the horizontal mean of the flow disturbance is zero. 

While expression (2.8) represents general disturbances, all instabilities to be 
considered in the following correspond to the case d = 0 except for the skewed 
varicose instability. In the case d = 0 the disturbances of the form (2.8) separate into 
two classes, those with vanishing coefficients d,, and those with vanishing coefficients 
4,. Since the separation into two classes leads to a considerable decrease in the 
amount of computation, and since the onset of the skewed varicose instability can be 
estimated from earlier results in the small region of the parameter space where it is 
relevant, we shall use the property d = 0 in the following. 

In the numerical computations of longitudinal roll solutions and in the stability 
analysis the summations in expressions (2.7), (2.8) must be truncated. As in previous 
work we neglect all coefficients with subscripts 1, n satisfying the inequality 

l+n  > NT, 
where NT can be varied in order to test the accuracy of the approximation. Most of 
the results displayed in the figures of this paper have been obtained with both NT = 
8 and NT = 10. Typically the results differ by less than 1 %. At the highest Rayleigh 
numbers only this difference grows to a few percent and some cases have been 
computed with NT = 12. 

2, n 

3. Interaction of longitudinal rolls with the mean flow 
Most of the properties of steady longitudinal convection rolls such as the Nusselt 

number and the y- and z-components of the velocity field remain unchanged in the 
presence of a mean shear in the x-direction. We thus can refer to earlier computations 
of properties of convection rolls given by Busse (1967), Clever & Busse (1974, 1981), 
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Schneck & Veronis (1967) and others. Here we are especially interested in the changes 
in the longitudinal components of the velocity field introduced by the convection 
flow. Some of these changes have been studied by Ogura & Yagihashi (1969) and by 
Hwang & Cheng (1971) in the case of air. In the following we shall provide some 
additional information for P = 0.71 and consider other Prandtl numbers. 

One of the most interesting changes introduced by the onset of convection is the 
decrease in the mass flux through the layer at  a fixed mean pressure gradient. The 
dimensionless mass flux corresponding to Poiseuille flow is given by ( uo) = $Re, 
where the angular brackets indicate the average over the fluid layer. The ratio S of 
the mass flux in the presence of longitudinal rolls divided by the mass flux of 
Poiseuille flow is given by 

S = 1 +$(u,) /Re 
and has been plotted for two typical cases in figure 1 as function of the Rayleigh 
number. As is evident from the curves, the effect of convection decreases with 
increasing Prandtl number. The decrease in the mass flux is connected with the fact 
that the work done by the pressure gradient is no longer balanced solely by the 
dissipation caused by the viscous stress of the mean velocity field. Instead the 
dissipation associated with the fluctuating component makes a significant con- 
tribution. By multiplying ( 2 . 6 ~ )  by all./ay and averaging it over the fluid layer we 
obtain the relationships 

<Iva/aY$12) = ((u;+u;)A29)a/aY$) = - ( (u;+U;)u;)  

( i v a i a y w )  +<iu;+u;i2) = (u;(u;+u;)) = (U;(U,,+U,D, 

(3.2) 
where the integrated version of (2.6b) and the property that ur is symmetric in z have 
been used. Relationships (3.2) can be rewritten in the form 

where the right-hand side expresses the work done by the pressure gradient while the 
left-hand side describes the viscous dissipation associated with the longitudinal 
velocity component. Because of the relationship 

2(u; u;)/Re = - ( m i )  = ( u , ) ,  

(3.3) 
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FIGURE 2. The profiles of the mean flow for the case P = 0.71, Re = 20 for the Rayleigh numbers 
(from right to left) Ru = 0,2000,2500, 3000,5000, lo4. Because of the symmetry about the plane 
z = 0, only the upper half has been shown. 

the quantity S can also be expressed in the form 

8 = 1 + (Ul>/<UO> = 1 -2((lva/aY 1 2 )  + <lu;12>)/Re (3.4) 
which relates the decrease in the mass flux to the shift in the dissipation. We have 
also plotted in figure 1 the kinetic energy of the fluctuating x-component of the 
velocity field 

(3.5) 
which grows roughly proportional to Ra-Ra,. We use the term ‘toroidal’ for the 
component of the velocity field described by $. The component described by tp will 
be called ‘ poloidal ’. 

The reduction of the mean flow amplitude due to the influence of convection is 
shown in figure 2. Since the mean shear at  the boundaries remains constant for a 
given value Re, the decrease of the mean flow is associated with a flattening of the 
profile. With increasing Rayleigh number, the effect of convection on the mean flow 
tends to saturate such that little change is noticed as the Rayleigh number grows to 
the order lo4. 

Etor = t(lV alaY $I2) 

4. Instabilities of longitudinal rolls 
Predominant among the instabilities of longitudinal rolls in the presence of a mean 

shear is the wavy instability. It corresponds to growing disturbances of the form (2.8) 
with vanishing d and vanishing coefficients din. The dependence of the real part ur of 
the growth rate u on the longitudinal wavenumber b is such that the instability first 
sets in with vanishingly small values of b as the Rayleigh number is increased. 
Beyond the stability boundary the value of b corresponding to a maximum growth 
increases rapidly as is shown in figure 3. The imaginary part ui reflects the advection 
of the disturbances by the mean flow. Thus ui is approximately proportional to b and 
to the Reynolds number. In fact, the relationship 

a, x b(uo + ul) (4.1) 
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b 
FIQURE 3. The real part a, of the growth rate aa a function of the wavenumber b for the Rayleigh 
numbers 3000, 2600, 2300, 2200, 2100 (from top to bottom) for the case P = 0.71, Re = 200, a = 
3.117. 

based on the z-average of the mean flow appears to be valid within a few percent 
throughout the parameter space. 

In order to gain an impression of the wavy instability of longitudinal rolls, 
computations at a Rayleigh number above the critical value RuII have been carried 
out based on an analysis analogous to that described for the oscillatory instability by 
Clever & Busse (1987). Because the oscillatory instability of convection rolls exhibits 
the same symmetry properties as the wavy instability, only minor changes were 
required in the computer program. As an example we show the way longitudinal roll 
in figure 4. The temperature distribution (figure 4a) clearly indicates that the 
waviness represents an alternating shift of the roll structure towards the left and the 
right of the mean flow direction. The shift is the result of the advection by a y- 
independent component of motion which is described by the y-independent part of 
- a$/az. Besides this latter component a component proportional to  sin 2ay can be 
seen in figure 4(b)  while the sinay-component of @ vanishes at z = 0 for reasons of 
symmetry. Away from the mid-plane the sin ay-component of $ predominates as can 
be seen in figure 4(c). 

A typical example of the stability boundary introduced by the wavy instability is 
shown in figure 5 in the case of P = 0.1. Evidently the stability boundary depends 
little on the Reynolds number once the latter has exceeded a threshold value. Using 
the same arguments presented in the case of an inclined convection layer (Clever & 
Busse, 1977) and for convection in the presence of Couette flow (Clever et al. 1977) 
we can derive the approximate relationship 

(T, = - b2 {Re2 (A - (Ra-Ra,)B) + (Ra-Ra,) C +  . . .} (4.2) 
for the real part of the growth rate of the wavy instability. Instead of a formal 
mathematical derivation of this expression we briefly repeat the arguments leading 
to relationship (4.2). Since the instability may be regarded as a modification of the 
neutral perturbation in the form of a translation of the longitudinal roll pattern, gr 

must vanish for b = 0. Because the onset of oblique rolls requires a Rayleigh number 
which is of the order b2ReZ higher than the critical value Ra, (at least for Reynolds 
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FIGURE 4. (a) Isotherms in the plane z = 0 for wavy longitudinal rolls and lines of constant in 
the planes z = 0, ( b ) ,  and z = -0.3, (c). Parameter values are Ra = 3000, P = 0.71, Re = 200, 
a, = 0.7, all = 3.117. 

numbers less than 5 x lo3) the coefficient A must be positive. Another stabilizing 
influence arises from finite-amplitude properties of the rolls even in the absence of a 
shear flow. In the latter case the wavy instability corresponds to the zigzag 
instability which can occur only for wavenumbers a sufficiently smaller than a,. For 
reasons of symmetry the relevant terms are proportional to the square of the 
amplitude of convection, and we thus conclude that the coefficient C in expression 
(4.2) is positive. The wavy instability is caused by terms involving the toroidal 
component of motion which give rise to the terms proportional to B at leading order. 
The expression 

RaII-Ra, x Re2A[C-Re2B]-' (4.3) 
for the stability boundary Ra,, (Re) derived from expression (4.2) appears to describe 
quite well the numerical results for moderate values of Re and Ra,,. 



Instabilities of longitudinal rolls in Poiseuille flow 525 

104 I I " " I  I I . . .  
t j 

1 

I 1 . . . .  I I I .  . . .  
10' 2 5 1 op 2 5 103 

Re 
FIGURE 5. The stability boundaries of longitudinal rolls as function of the Reynolds number Re and 
the Rayleigh number Ra for P = 0.1. Rolls are unstable above and to the right of the solid (wavy 
instability) and the double dash-dotted lines in the case a = 3.117. The corresponding lines in the 
case u = 2.6 are given by the dashed and the dash-double dotted lines. The triple dash-dotted and 
the dash-triple dotted lines indicate the second eigenvalue of the oscillatory instability 
corresponding to waves travelling in the direction of the mean flow. 

At  low Reynolds numbers the wavy instability disappears and is replaced by 
instabilities of convection rolls in the absence of a mean shear. A typical instability 
of this kind at  low Prandtl numbers is the oscillatory instability. It is of interest to 
consider the influence of the mean flow on the oscillatory instability. As is evident 
from figure 5 and 6, the double eigenvalue of the growth rate at Re = 0 splits into two 
in the presence of Poiseuille flow since the two travelling wave modes are no longer 
equivalent. The wave travelling in the direction opposite to the mean flow becomes 
the preferred mode of oscillatory instability. Because the phase speed and the 
advection by the mean flow have opposite signs, the imaginary part ui of the growth 
rate for the latter actually goes through zero at  a Reynolds number of about 30. The 
value for a = 3.117 is a bit higher, for a = 2.6 a bit lower, than 30, in both the cases 
P = 0.1 and P = 0.7. The preferred wavenumber b of the oscillatory instability also 
varies along the two branches of travelling waves. b increases from 2.5 to 3.2 along 
the lower branches and decreases from 2.4 to 1.7 along the upper branch in figure 6.  
This variation is somewhat less pronounced in the case of figure 5.  It should be noted 
that at Prandtl numbers of order unity, as in the case of air shown in figure 6, the 
oscillatory instability is preceded by the skewed varicose instability, at least for 
wavenumbers a in excess of 2.3. Because the latter instability corresponds to a finite 
ratio of the parameters d and b in (2.8) its stability boundary has not been calculated 
in the present analysis. In  analogy to the oscillatory instability we expect that the 
Rayleigh number for onset of the skewed varicose instability changes relatively little 
from its value at Re = 0 in the range Re 5 lo2 where it will be relevant. Since 
longitudinal convection rolls are stable at  supercritical Rayleigh numbers for a finite 
range of wavenumbers a which typically tends to shift to lower values of a with 
increasing Rayleigh number, we have selected a lower value of a in addition to the 
critical value a, = 3.117. The stability properties of the longitudinal rolls depend 
rather smoothly on the wavenumber a and approximate results for intermediate 
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FIGURE 6. The same as figure 5 for the case of P = 0.7. At low Reynolds number the skewed 
varicose instability (Busse & Clever, 1979) precedes the onset of the oscillatory instability. The 
corresponding boundary has not been plotted. 
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FIGURE 6. The same as figure 5 for the case of P = 0.7. At low Reynolds number the skewed 
varicose instability (Busse & Clever, 1979) precedes the onset of the oscillatory instability. The 
corresponding boundary has not been plotted. 

1 0 5  

5 

Ra-Ra, 2 

104 

5 

I '  I " " I  I 

I I 

5 1 02 2 5 103 2 
Re 

FIGURE 7. The stability boundaries corresponding to the onset of the wavy instability in the cases 
P = 2.5 (left ordinate) for a = 3.117 (solid line) and for a = 2.6 (dashed line) and in the case P = 
0.025 (right ordinate) for a = 3.117 (dotted line) and a = 2.9 (dash-dotted line). 

wavenumbers can be obtained by interpolation from the curves displayed in figures 
5-8. 

The minimum Reynolds number for the onset of the wavy instability changes 
relatively little as the Prandtl number is varied. But the minimum of the Rayleigh 
number for onset varies strongly with P. The difference between the critical Rayleigh 
number Ra,, for the wavy instability and the critical Rayleigh number Ra, for the 
onset of longitudinal rolls increases in proportion to P. In other words, the parameter 
A in (4.3) is roughly proportional to the Prandtl number, while B and C are 
independent of it. The region of stable rolls is thus decreased dramatically in the case 
of mercury shown in figure 7. With increasing Prandtl number the influence of the 
mean flow diminishes. In the case P = 2.5 which is also shown in figure 7 the wavy 
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instability still precedes other instabilities, but in the case of water shown in figure 
8 the knot instability occurs first when the Rayleigh number is increased. The latter 
instability also appears to be rather insensitive to the Reynolds number except for 
low values of Re. But the wavenumber b along the roll axis decreases roughly with 
the inverse of the Reynolds number. 

Although the wavy instability exhibits the same symmetry properties as the 
oscillatory instability of convection rolls (Busse 1972; Clever & Busse 1974), the 
eigenvalues are usually well separated. The dotted line in figure 8 shows the 
replacement of the oscillatory instability by the wavy instability at a Reynolds 
number of about 120. While the wavy instability is characterized by imaginary parts 
a, of the growth rate given approximately by relationship (4.1), the oscillatory 
instability corresponds to a period which is given by the circulation time of particles 
in a convection roll and thus is nearly independent of b except for the effects of 
advection by the mean flow. In  the case a = 2.2 of figure 8 the dash-dotted line 
describes the onset of the oscillatory instability according to this distinction. 

5. Concluding remarks 
The wavy instability of longitudinal rolls in the presence of Poiseuille flow is 

clearly evident in some of the pictures of experimental observations shown in the 
papers by Avsec (1937) and Avsec & Luntz (1937). Since quantitative data have not 
been provided for those experiments and because they also do not seem to be 
available from later experiments, we are not able to compare the theoretical 
predictions for the onset of the wavy instability with the observations. Since the 
laboratory realization of convection rolls in the presence of Poiseuille flow is 
relatively straightforward, we hope that our computations will stimulate more 
experiments. 

The form of the stability boundary in a Ra-Re diagram for Poiseuille flow is 
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surprisingly similar to that for Couette flow (Clever et al. 1977) at least for P = 0.71 
which is the only case treated in the latter paper. For reasons of symmetry the fields $, 
4 have vanishing coefficients cln for odd 1 + n instead of even 1 + n in the latter case 
and the growth rate for the wavy disturbances is real. These differences do not seem 
to affect the mechanism of instability, however. 

The properties of the longitudinal rolls in the presence of Poiseuille flow remain 
unchanged when a homogeneous longitudinal magnetic field is imposed in the case of 
an electrically conducting fluid. But the wavy instability and other three-dimensional 
instabilities are likely to  be delayed by the stabilizing influence of the Lorentz force. 
A similar influence will be exerted by the Coriolis force in a rotating system with the 
axis of rotation coincident with the direction of the mean flow. This situation may 
be realized in the thin gap between rigidly rotating cylinders with the centrifugal 
force providing the effective gravity. The properties displayed in figure 1 and 2 are 
thus of interest for Rayleigh numbers higher than the values Ra,, calculated in this 
paper. 

It will be of interest to  analyse the properties of the wavy longitudinal rolls 
generated by the growth of the wavy instability. Some preliminary computations of 
finite-amplitude wavy rolls such as those displayed in figure 4 indicate that the 
convective heat transport is reduced significantly by the evolution of the three- 
dimensional wavy pattern. It is planned to address the problem of the dependence 
of finite-amplitude wavy rolls in the various dimensionless parameters in future 
work. 

The research reported in this paper has been supported by the Atmospheric 
Sciences Section of the US National Science Foundation. 
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